If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3r^2-20r+9=0
a = 3; b = -20; c = +9;
Δ = b2-4ac
Δ = -202-4·3·9
Δ = 292
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{292}=\sqrt{4*73}=\sqrt{4}*\sqrt{73}=2\sqrt{73}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2\sqrt{73}}{2*3}=\frac{20-2\sqrt{73}}{6} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2\sqrt{73}}{2*3}=\frac{20+2\sqrt{73}}{6} $
| h–6=-9 | | Y+6=-4/5x | | y-6.1=7.92 | | 4x^2-8x+12=9 | | 24x+2=20x+10 | | w-8.87=2.16 | | 11a+3=4a+10 | | 9x+1=11×-23 | | 5^n=5^11(5^3) | | 2/15x5=x | | 3x/5=20/9 | | x+3.5=5.46 | | 4s+25=3s+35 | | 9=16x+13 | | 2a+13=7a+10 | | 7x+1+3x=105 | | 7+2x=2x+77+2(2)=2(2)+7 | | 5p-2p=12p | | 7/4z-1/6=17/6=3/4z | | 25z+17=13z+40 | | 10c+25=15+15c | | 3 = r2− -1 | | 13z+2=z+14 | | 4(2x-1)-2(x-5)=5(x+2)+3 | | 6x/7-2x/21=25 | | 8x+17=2x+7 | | 43=2(w+5)+2w | | 7=2v+3 | | 4x-13=75 | | 10z+1=2z+8 | | 4r^2-26r=-20 | | 2x+5=x-2+1/2x |